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Long-time evolution of a drop size distribution by coalescence in a linear flow
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The growth of spherical drops by coalescence in simple shear and axisymmetric straining flows has been
numerically investigated, and the long-time scaling behavior of the system was explored. It is shown that
hydrodynamic interactions qualitatively modify the the collision kernel in the population balance equation and
thus alter the evolution of the drop size distribution at long times. In the presence of hydrodynamic interac-
tions, the number of drops in the system decays asand the average drop size growsess in the absence
of hydrodynamic interactions, these quantities evolve exponentially at long times. Hydrodynamic interactions
lead to broader drop size distributions, and cause the influence of initial conditions to decay with time. Drops
undergoing thermocapillary migration are shown to exhibit similar features. Our results are shown to be
consistent with the established theory for the scaling behavior of aggregating systems. It is shown that the
theory applies even in certain cases where the binary collision kernel does not have the assumed form. In the
presence of hydrodynamic interactions, the scaling regime is attained dloggrithmically).
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I. INTRODUCTION The scaling behavior for systems with homogeneous ker-
nel functions also depends qualitatively on the exponent
The growth of particle clusters by coagulation in a disper-defined by
sion is important for a wide range of natural and industrial
processes, such as the growth of rain drgds blending of
immiscible polymer$2], production of ceramic particld8],
and the flocculation of suspended colloidal particles in food
processind4] and water treatmeni6]. The cluster-size dis- where « is the size ratio of clusters. Kernel functions are
tribution evolves in time according to the Smoluchowski classified according to whethgr>0 (class ), u=0 (class
equation[6,7] 1), or <0 (class Il) [8]. For class | kernels, collisions
between the largest clusters in the system dominate the
Nk _ } S K nS Kk growth of the cluster size distribution, whereas collisions be-
A 2152 (vi,v)min; My (i,vy)ny, tween small and large clusters controls the evolution for
(1.2 class lll systems. Class Il kernel functions are the interme-
diate case where collisions between large clusters and colli-
wheren, is the number density of clusters with volurng  sions between disparate size clusters are both important.
and the kernel functiokK (u,v) represents the rate of coagu-  The theory for systems described by E#f.1) is consid-
lation of clusters with volumes andv. The orderp moment  erably less developed for kernel functions that do not satisfy
of the cluster-size distribution is defined as the functional form(1.3) and(1.4). Thus, many problems can
only be studied by numerical simulatigd1-18. To date,
- 0 however, there has been little overlap between numerical and
Mp:gl UMk - (1.2} theoretical studies: the scaling regime has rarely been ex-
plored by numerical simulation. Thus, little is known about
For homogeneous kernel functions, Ef.1) is invariant ~ the extent to which theoretical results for the asymptotic
under a group of similarity transformations for which there Scaling regime apply either for finite times and away from
exist scaling solutions for large cluster sizk&-10. The  gelation or for kernel functions that do not have the assumed

scaling behavior of Eq(1.1) depends on the degree of ho- functional form(1.3) and(1.4).

K(u,ku)~umx*, k—0, (1.9

o0

mogeneitym of the kernel function Previous studies have often relied on drastically simpli-
fied models for the kernel function due to the difficulty of
K(bu,bv)=b"K(u,v), (1.3 describing the complex aggregation processes and cluster ge-

ometries relevant to most problerf3,19]. An exception is
whereb is a constant. Fom>1, the average cluster size liquid-liquid suspensiongemulsion$ under strong surface
diverges at a finite(gelation time; otherwise,s increases tension conditions where drop deformation is negligible so
monotonically. Form=1, the large-cluster scaling regime that “clusters” are spherical. Moreover, pair interactions and
corresponds to the long-time behavior of the system. “aggregation” (i.e., coalescengean be modeled for spheri-

cal drops in Stokes flow with only modest computational

effort [16—18,20,21. Emulsions of spherical drops thus pro-
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For these reasons, we restrict the present study to emul- In the absence of particle interactions=1), the colli-
sions of spherical drops in Stokes flow. Specifically, we consion kernel is a class 1l =0) first-degree homogeneous
sider the growth of spherical drops by coalescence in lineafunction. In this case, the evolution of the system in dimen-
flows. This choice is motivated by the theoretical predictionsionless variables is independent of flow-type and viscosity
that hydrodynamic interactions qualitatively affect the long-ratio.
time evolution of this system. The growth of drops undergo- Hydrodynamic interactions hinder coalescence, particu-
ing thermocapillary migration is also considered. Our resultdarly for extreme size ratios because smaller drops tend to be
show the extent to which the asymptotic long-time theoryconvected around, rather than captured by, larger drops.
describes the behavior of the system at finite times. MoreThus, the system evolves more slowly, and broader drop size
over, we provide examples where the long-time scalingdistributions are obtained in the presence of hydrodynamic
theory applies even though the kernel function does not obeinteractions. As shown in the Appendix, collision efficiencies

the form(1.3) and(1.4). are lower for high viscosity drops\(<1). This results from
The numerical model is described in Sec. Il, and the relthe fact that the near-contact lubrication resistance between
evant theory is reviewed in Sec. Ill. Numerical results aredrops with tangentially mobile interfaces is controlled by

compared to theoretical predictions in Sec. IV. Results fordissipation associated with the flow inside of the drfip4.
thermocapillary migration are discussed in Sec. V. Conclud- For A <1, collision efficiencies are lower in shear flow

ing remarks follow in Sec. VI. (2.3 than in axisymmetric strai2.4). In shear flow, colli-
sion efficiencies vanish fok below a critical value\ 5 given
Il. KERNEL FUNCTION by Eq.(A12).
o As shown in the Appendix, collision efficiencies in strain-
The collision kernel has the form ing flow vanish in the small size-ratio-limit with exponent
n=1/3, whereu is defined by Eq.(1.4). Thus, Eq.(2.2)
K(u,0)=Ko(u,v)E, (2.9 hecomes a class I kernel function in the presence of hydro-

dynamic interactions in straining flow. In shear flow, colli-
r§ion efficiencies vanish with exponept=3/2 at a critical
Size ratiokq but the exponent is defined by E@\10). How-
ever, the numerical results presented in Sec. IV indicate that
theory for class | kernel functions nonetheless describes the
long-time behavior of the system.

where K, is the collision kernel for noninteracting drops.

Pairwise hydrodynamic interactions are incorporated throug
the collision efficiencye [20,23, as described in the Appen-

dix. For neutrally-buoyant non-Brownian drops in a linear
flow,

Ko(u,v)=Cy(uP+p 133, (2.2
Ill. SCALING BEHAVIOR
where v is the strain rate, an@ is a flow-dependent con-
stant. According to Eq(1.3), K, is @ homogeneous kernel
with degreem= 1. We consider below simple shear flow rep-
resented in Cartesian coordinatesy(z) by

In the presence of hydrodynamic interactidokass | ker-
nels, the evolution of the system is controlled by the coales-
cence of similar-size drops; in the absence of particle inter-
actions(class Il kernels the capture of small drops by the
much larger drops is also important. This picture is borne out

u=1(y, 0,0, (2.3 py the analysis of Van Dongen and Erfi8125] for the long-
_ ) . time behavior of Eq(1.1) for first-degree kernels belonging
and axisymmetric straining flow to classes | and II. Their results are summarized below.
u=y(—3r,0,2), (2.4

A. Class | kernels

wherer = \/x2+y2 is the distance from the symmetry axis.  The scaling behavior for class | kernel functiong 28]
For shear flow,C=="1; for axisymmetric strain,C

=(8/3)"2. Henceforth, time is nondimensionalized by e(x)=(s’Ins)n(v,t), (3.9

(CyM;) "%, whereM, is the conserved volume fraction of

the drop phase, and drop volumes are nondimensionalized byherex=uv/s(t), ands(t)=M,(t)/M, is average drop size

the volume of the smallest drop in the system. with momentsM , defined by Eq(1.2). The scaling solution
We consider a dilute suspension of spherical drops withp(X) is independent of the initial conditions. The small- and

viscosity A 7 in a fluid with viscosity », and we introduce large-size tails of the drop size distribution are described by

the viscosity parameteA =1/(1+\). Stokes flow condi- [25]

tions apply. The effects of surfactants and nonhydrodynamic

forces such as van der Waals attraction are neglected. Under p~X"2, x<1, (3.23

these assumptiong,depends on the parametarandA and

on the flow type but not on the drop sig20]. According to

the discussion in Sec. |, it follows that hydrodynamic inter-

actions may affect the class but not the degree of the kernel

function. ThusK is a first-degree kernel. where

p~Ax"le ¥ x>1, (3.2b
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FIG. 1. Viscosity-ratio dependence of the paramétér defined
by Eg. (3.3 for large-size tail of scaling solution in shear flow
(solid curve, and straining flow(dashed curve

and

algebraically

and the average drop size evolved 25]

s~exp(2ywit).

Expressiong3.3) and (3.4) were evaluated for collision
kernels(2.1) and (2.2) with collision efficiencies given by

1)
A

1K(u,1—u)
u(l—u du,

_fldufoc de
w, = TR M (u,v).

For class | kernels, the total number of drddg decays

wy 10 ¢t
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Egs.(A2)—(A6). The viscosity and flow-type dependence of
the parameter$/A and w, are depicted in Figs. 1 and 2.
According to Eq.(3.6), the flow-type and viscosity ratio af-
fect the average drop size at long times through the param-
eterw,. As shown in Sec. IV Bw, approximately captures
the influence of flow type and viscosity ratio on the evolution
of the system.

B. Class Il kernels

The scaling behavior for class Il kernel functionq 2§]
e(x)=8"n(v,1), 3.7

where x and s(t) are defined as in Eq3.1). For class Il
kernels, the scaling solution depends on the initial condi-
tions. The small- and large-size tails of the drop size distri-
bution are given by25]

p~x"2 M y<q, (3.83
p~XPe ¥ x>1. (3.8b

The number of dropM, and the average drop sizevolve
exponentially for class Il kernel5]

Mo~e!, (3.9
s~eWit, (3.10

The constantsy;=5.62, «=0.515, andB3=1.18 were ob-
tained by numerical integration of Eql.1), as described
below.

IV. NUMERICAL SIMULATIONS

Equation(1.1) was integrated as a set of ordinary differ-
ential equations for;=log;on; with i=1,2,3 ... ,N. Dis-
crete drop volume spectra were obtained by considering only
discrete(i.e., monodisperse, bidispejsaitial distributions.
Except as noted, our numerical results correspond to mono-
disperse initial conditions:

(b)

10

wr

0.1}

0.01 ; .
0.01 0.1 1

A—Ag

FIG. 2. Viscosity dependence wf; defined by Eq(3.4) for (a) straining flow,(b) shear flow[ A is the critical viscosity ratidA12)].
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FIG. 3. Drop size distributions, average size indicatad; 1 FIG. 4. Rescaled drop size distributions for noninteracting
(solid curvey, A=4A, straining flow (dashed curvgs A=4A, drops. In sequence from left to right, profiles correspondsto
shear flow (dot-dashed curvés noninteracting drops(dotted  =10,1¢,10%,10%,1¢%,10'210', 102°, 1074
curves.

Fig. 4. The results shown in Fig. 5 reveal that in the presence
n(v,00=6(v—1). (4.2  of hydrodynamic interactions, the distribution of sub-
average-size drops approaches the scaling re@mgmore
A spline over a logarithmic distribution of drop volumes was slowly, but the distribution of larger drops does not exhibit
used to represent the large-size tail of the distribution. Théhis scaling, even at extreme timgsorresponding to un-
overall accuracy of the procedure @(1/N%). In all cases, Physical values of). Our results indicate that large drops
numerical convergence was achieved Wit 800. Collision exhibit a nonuniversal |Ogal’ithmiC evolution in the presence

efficiencies were calculated according to the procedure deaf hydrodynamic interactions. _ _
scribed in the Appendix. For noninteracting drops, the long-time scaling for small

drops(3.89 is recovered, as shown in Fig(a. Figure gb)
reveals a logarithmic correction to the long-time scaling
(3.29 for small drops in the presence of hydrodynamic in-
Size distributions of interacting and noninteracting dropsteractions. Results for a monodispe(del) and a bidisperse
are shown in Fig. 3. The initially monodisperse drop sizeinitial drop size distribution
distributions evolve to an algebraic distribution of small
drops and an exponential tail of large drops. At long times,
hydrodynamic interactions increase the population of the
small drops.
The approach to the scaling regirt®7) for noninteract- are shown in Fig. 6 1,=1 for both distributions Oscilla-
ing drops is evident by the rescaled distributions depicted irions in the drop size distribution, resulting from bidispersed

A. Drop size distributions

1 1
n(v,O):§5(0—1)+ 25(0—2) (4.2

10 — 10 _—
.t (a) ] [ (b) ]
e - — L -
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FIG. 5. Rescaled drop size distribution for hydrodynamically interacting drbps]/2, in (a) straining flow andb) shear flow. Profiles
from left to right are the same as Fig. 4.
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FIG. 6. Small-size tail of distribution, average size indicated; monodisperse initial condiidngsolid, dashed curvéesbidisperse
initial conditions(4.2) (= ¢ —<¢ — ¢ —); (8 noninteracting dropsib) A=1/2 shear-flow(solid curves,— ¢ — & — & —), A=1/2 straining
flow (dashed curves

initial conditions, decay only in the presence of hydrody-hydrodynamic interaction$3.5 and (3.6) results from the

namic interactions, consistent with the influence of initialnonuniversal evolution of the large drops discussed above.

conditions mentioned in Sec. Ill. The effect of the viscosity parameter and flow type are ap-
For noninteracting drops, the large-size tail of the dropproximately captured by rescaling time agt.

size distribution attains the asymptotic for(®.8b at long

times, as shown in Fig. 7. Figure 8 reveals a logarithmic V. THERMOCAPILLARY MIGRATION
convergence of the parametéfA to the long-time result . . S )
(3.3), but the individual paramete®; A of the large size tail Here we consider the size distribution in a dilute suspen-

(3.2b do not become stationary in the presence of hydrody?ion of spherical drops undergoing thermocapillary migration

namic interactions. This is consistent with the nonuniversal? & uniform temperature gradient. Stokes flow conditions
behavior of large drops seen in Fig. 5. and purely conductive heat transport are assumed. System

parameters include the viscosity parameterand a conduc-
tivity parameterA 1= 1/(1+ A1), whereAt is the ratio of the
drop- and continuous-phase thermal conductivities.

The evolution of the number of drops and average drop The collision kernel for thermocapillary migration is
size is depicted in Figs. 9 and 10. In the absence of hydrogiven by Eq.(2.1) with
dynamic interactions, the system evolves exponentially at
long times, as predicted by Eg®8.9) and (3.10. The slow Ko(u,0)=mUgug ¥ utP+02R3)2uti-0, (5.

approach to the long-time scaling behavior in the presence of ) ) L )
where U is the thermocapillary migration velocity of an

isolated drop with volume [26]. Here, time is nondimen-

B. Evolution of the average drop size and number of drops

0.45
oa sionalized by Uqvo *M4) L.
) The effects of pairwise hydrodynamic and thermal inter-
g 035¢p actions are incorporated through the collision efficieficy
8 03f for thermocapillary motion. As in shear flow, there exists a
& 025 | c_r|t|cal size ratio below whicle=0 [_16]. Thg ker_nel func-
& tions for linear flows and thermocapillary migration are both
a, 027 class Il in the absence of particle interactions, and become
0.15 class I in the presence of particle interactions. Moreover,
both collision kernels scale with the first power of drop vol-
0.1t ume; however, Eq(5.1) is not a homogeneous function of
0.05 | drop volume. Nevertheless, the same long-time scaling ap-
0 T plies to both problems, as shown by the graphs in Figs. 11
0 5 10 15 20 25 30 35 40 45 50 and 12, which were constructed by replotting the values cal-
T culated by Wang and Davi46].
FIG. 7. Large-size tail of distribution witlx, 8 listed below VI. CONCLUSIONS
(3.10, noninteracting drops. In sequence from bottom to top
of figure, profiles corresponds=100,1d,1cf,10%, 10, 10" The numerical results presented herein and the scaling
10t6 analysis of van Dongen and Er&6] indicate that hydrody-
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FIG. 8. Parameters for large-size tail of distributi@?2b), A=1/2; shear flow(solid curve$ and straining flon(dashed curvgsformula
(3.3 [dotted lines in(a)].

namic interactions qualitatively affect the long-time evolu- constant Moreover, for a fixed value of the Hamaker con-
tion of the drop size distribution in linear flows and in ther- stant there exists a critical drop size correspondingdto
mocapillary migration. According to our results, the scaling=B* beyond which coalescence is strongly hindeEed0
theory applies even though the kernel functions do not obef27]. Thus, a narrow drop size distribution, characterized by
the assumed forndl.3) and (1.4), except in straining flow. B~B* is eventually attaineil7,18,22,28
However, in the presence of hydrodynamic interactions the
scaling regime is attained much more slowly, particularly for ACKNOWLEDGMENTS
the largest drops in the distribution. We thank Dr. Alexander Zinchenko for the use of his
Hydrodynamic interactions may have less influence orcomputer subroutines to evaluate the pairwise hydrodynamic
other systems. Numerical simulations show that hydrodymobilities of spherical drops in linear flows. This work was
namic interactions do not qualitatively affect the size distri-supported by NASA Grant No. NAG3-2477.
bution of drops undergoing Brownian moti¢t6]. This is
because the collision efficiency for Brownian coalescence is APPENDIX A: COLLISION EFFICIENCIES
nonvanishing in the small size ratio linfi21]. As a result, The relative velocity of two particles in Stokes flow is
the Brownian collision kernel is class Ill, whether or not given by[29]
hydrodynamic interactions are present.
Drop deformation was neglected in our study; this as-
sumption is valid provided thaB<1 for all drops in the

system, wher®=0v"37y/o and o is the coefficient of sur-

1
Uarip) = wa Fpteryp

face tension. For finit®, coalescence rates become sensitive AN 12+ BT (1 = Taa 19)]- € 1o,
to the strength of van der Waals attractiGre., Hamaker (A1)
, 300
10000 | (a)
250 |
1000 ¢ 1 200 |
My M, 150 +
100 |
10
50 |
Yo 1 2. 3 4 5 6 O 100 200 300 400 500 600 700
t wit

FIG. 9. Evolution of the number of drops {@) absence(b) presence of hydrodynamic interactioiig. numerical resul{solid curve,
scaling(3.9) (dotted curvg (b) A=1 (dot-dashed curyein sequence from bottom to top, profiles correspond ta1/2, 1/4, 4\, shear flow
(solid curves, straining flow(dashed curves
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FIG. 10. Evolution of the average drop size(@) absence(b) presence of hydrodynamic interactiofia);, numerical resul{solid curve,
scaling(3.10 (dotted curvg (b) A=1 (dot-dashed curyein sequence from bottom to top, profiles correspondtel/2, 1/4, 4\, shear
flow (solid curvey, straining flow(dashed curvegsscaling(3.6) (line segment

wheree and w are the rate-of-strain tensor and vorticity of = A(t)—B(t) dt
st(T'12) Jr
12

the ambient linear flow field respectivell,is the identity EEORER (AS)

tensor,r, is the relative position of the drop centersy,

=|r,4 is the center-to-center separation, d@ng=r1,/r 15 is

the unit orientation vector. Pairwise hydrodynamic interac-and

tions enter through the scalar pair mobility functighandB

which depend on the size ratio of the dropshe viscosity tB(t)

ratio A, and the center-to-center separatigp. lsh(F10) = f e 2sdh) dt, (AB)
Equation(Al) can be integrate@23] to yield pair colli-

sion efficiencies for drops in axisymmetric straining flow:

. . , . x
31 The collision surface is defined loy,=r7,, wherer3, is the
Eq=e 3, (A2) sum of the two drop radii.
and in simple shear flow: C_ollision efficiencies were evalu_a_ted by _numerical inte-
gration of Eq.(A5) and(A6) with mobility functionsA andB
Esh:[Eg{[s_ I Sh(r*lfz)]3/2, ng'z lsn(rty), (A3) obtained from a solution of the Stokes equations in bispheri-
cal coordinate$20].
En=0, Eﬁfs Lon(r%y). (A4) Calculated collision effigiengies for strai.n.ing fI(ﬁ\gt. and_
shear flowEg,, are shown in Fig. 13. Collision efficiencies
Here,l; andlg, are the mobility function integrals depend on the size ratio, viscosity ratio, and flow type; by
() (b) ,
/,’ 20,} /4'
‘»’/ ‘/”
10t d 1 /
-1 ” 15 J/
MO /," MO ',/
& sy
yd 10 f 4
b /
4
° // 5 . //
© S e 0/
1 —l 0 O
0 05 1 15 2 25 3 35 4 45 5 0 5 10 15 20 25 30 35 40 45
t t

FIG. 11. Evolution of the number of drops in thermocapillary migration@nabsence(b) presence of hydrodynamic interactions;
numerical results from Ref16] (symbolg; scaling(3.5), and (3.9 (dotted curves A =A;=1/3; Gaussian initial size distribution, unit
mean volume, standard deviation 0.2.
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FIG. 12. Evolution of the average drop size in thermocapillary migratioteirabsence(b) presence of hydrodynamic interactions;
numerical results from Ref16] (symbolg; scaling(3.6) and(3.10 with w,=1, w;,= 1.5 (dotted curvg system parameters as in Fig. 11.

symmetryE(x,\)=E(x~*,\). As a consequence of hydro- In shear flow, the collision surface is completely enclosed
dynamic interactionsE<1. The results show that collision by a region of finite trajectories for size ratios smaller than a
efficiencies decrease for extreme size ratios and large viscostitical value x, [23] which satisfies

ity ratios. In the absence of hydrodynamic interactioAs,
=B=0, we recovelE=1 according to EqSA2)—(A6). The
transverse mobilityB vanishes forn=0 but is otherwise
positive, and the quantity-1 A is always positive. It follows
that

e 3D — | (r*)=0, (A9)
according to Egs(A2) and (A3). The collision efficiency
vanishes as

EshS Esta

( A7) 0)3/2

Esh~(k—« (A10)

according to Egs(A3) and (A6). The equality holds for for x— «q. For k<kg, Esy=0. The critical size ratio in-

A=0. creases with\, as seen in Fig. 1B). Solving Eqg.(A9) nu-
For small size ratios, an estimate for the collision effi- merically, we find

ciency in straining flow is obtained by approximating the

trajectories of much smaller drops with the streamlines of the ko=1 for A<A,, (A11)
undisturbed flow field around a larger drop. Under the as-
sumption that coalescence occurs for trajectories that intewhere
cept the collision surface, we obtain
Ao=7.727< 103, (A12)

I S (A8)

For A<A,, all drop size distributions are stationary in shear

consistent with the results shown in Fig.(aB flow.
1 : . : . 1
0.1
Est Esh
0.1 0.01
0.001 }
0.01 . . : ‘ 0.0001 L1 : .
5 -4 3 2 -1 0 3

log10 K

log10 K

FIG. 13. Collision efficiencies for straining flova), shear flow(b); viscosity ratio\ as indicated.
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