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Long-time evolution of a drop size distribution by coalescence in a linear flow

A. E. Ismail* and M. Loewenberg
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~Received 22 April 2003; revised manuscript received 5 December 2003; published 30 April 2004!

The growth of spherical drops by coalescence in simple shear and axisymmetric straining flows has been
numerically investigated, and the long-time scaling behavior of the system was explored. It is shown that
hydrodynamic interactions qualitatively modify the the collision kernel in the population balance equation and
thus alter the evolution of the drop size distribution at long times. In the presence of hydrodynamic interac-
tions, the number of drops in the system decays ast21, and the average drop size grows aseAt; in the absence
of hydrodynamic interactions, these quantities evolve exponentially at long times. Hydrodynamic interactions
lead to broader drop size distributions, and cause the influence of initial conditions to decay with time. Drops
undergoing thermocapillary migration are shown to exhibit similar features. Our results are shown to be
consistent with the established theory for the scaling behavior of aggregating systems. It is shown that the
theory applies even in certain cases where the binary collision kernel does not have the assumed form. In the
presence of hydrodynamic interactions, the scaling regime is attained slowly~logarithmically!.

DOI: 10.1103/PhysRevE.69.046307 PACS number~s!: 47.55.Kf, 82.70.Kj
er
ia

o

k

u-

re

o-

e

er-

re

the
e-

for
e-

olli-
.

isfy
n

and
ex-
ut
tic
m
ed

li-
of
r ge-

so
nd
-
al
-
ithss
I. INTRODUCTION

The growth of particle clusters by coagulation in a disp
sion is important for a wide range of natural and industr
processes, such as the growth of rain drops@1#, blending of
immiscible polymers@2#, production of ceramic particles@3#,
and the flocculation of suspended colloidal particles in fo
processing@4# and water treatment@5#. The cluster-size dis-
tribution evolves in time according to the Smoluchows
equation@6,7#
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K~vk ,v j !nj ,

~1.1!

wherenk is the number density of clusters with volumevk
and the kernel functionK(u,v) represents the rate of coag
lation of clusters with volumesu andv. The order-p moment
of the cluster-size distribution is defined as

M p5 (
k51

`

vk
pnk . ~1.2!

For homogeneous kernel functions, Eq.~1.1! is invariant
under a group of similarity transformations for which the
exist scaling solutions for large cluster sizes@8–10#. The
scaling behavior of Eq.~1.1! depends on the degree of h
mogeneitym of the kernel function

K~bu,bv !5bmK~u,v !, ~1.3!

whereb is a constant. Form.1, the average cluster sizes
diverges at a finite~gelation! time; otherwise,s increases
monotonically. Form<1, the large-cluster scaling regim
corresponds to the long-time behavior of the system.
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The scaling behavior for systems with homogeneous k
nel functions also depends qualitatively on the exponentm,
defined by

K~u,ku!;umkm, k→0, ~1.4!

where k is the size ratio of clusters. Kernel functions a
classified according to whetherm.0 ~class I!, m50 ~class
II !, or m,0 ~class III! @8#. For class I kernels, collisions
between the largest clusters in the system dominate
growth of the cluster size distribution, whereas collisions b
tween small and large clusters controls the evolution
class III systems. Class II kernel functions are the interm
diate case where collisions between large clusters and c
sions between disparate size clusters are both important

The theory for systems described by Eq.~1.1! is consid-
erably less developed for kernel functions that do not sat
the functional form~1.3! and~1.4!. Thus, many problems ca
only be studied by numerical simulation@11–18#. To date,
however, there has been little overlap between numerical
theoretical studies: the scaling regime has rarely been
plored by numerical simulation. Thus, little is known abo
the extent to which theoretical results for the asympto
scaling regime apply either for finite times and away fro
gelation or for kernel functions that do not have the assum
functional form~1.3! and ~1.4!.

Previous studies have often relied on drastically simp
fied models for the kernel function due to the difficulty
describing the complex aggregation processes and cluste
ometries relevant to most problems@3,19#. An exception is
liquid-liquid suspensions~emulsions! under strong surface
tension conditions where drop deformation is negligible
that ‘‘clusters’’ are spherical. Moreover, pair interactions a
‘‘aggregation’’ ~i.e., coalescence! can be modeled for spheri
cal drops in Stokes flow with only modest computation
effort @16–18,20,21#. Emulsions of spherical drops thus pro
vide an attractive model system suitable for comparison w
experiments@9–11,22#.
a-
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For these reasons, we restrict the present study to e
sions of spherical drops in Stokes flow. Specifically, we c
sider the growth of spherical drops by coalescence in lin
flows. This choice is motivated by the theoretical predicti
that hydrodynamic interactions qualitatively affect the lon
time evolution of this system. The growth of drops underg
ing thermocapillary migration is also considered. Our resu
show the extent to which the asymptotic long-time theo
describes the behavior of the system at finite times. Mo
over, we provide examples where the long-time scal
theory applies even though the kernel function does not o
the form ~1.3! and ~1.4!.

The numerical model is described in Sec. II, and the
evant theory is reviewed in Sec. III. Numerical results a
compared to theoretical predictions in Sec. IV. Results
thermocapillary migration are discussed in Sec. V. Concl
ing remarks follow in Sec. VI.

II. KERNEL FUNCTION

The collision kernel has the form

K~u,v !5K0~u,v !E, ~2.1!

where K0 is the collision kernel for noninteracting drop
Pairwise hydrodynamic interactions are incorporated thro
the collision efficiencyE @20,23#, as described in the Appen
dix. For neutrally-buoyant non-Brownian drops in a line
flow,

K0~u,v !5Cġ~u1/31v1/3!3, ~2.2!

where ġ is the strain rate, andC is a flow-dependent con
stant. According to Eq.~1.3!, K0 is a homogeneous kerne
with degreem51. We consider below simple shear flow re
resented in Cartesian coordinates (x,y,z) by

u5ġ~y, 0, 0!, ~2.3!

and axisymmetric straining flow

u5ġ~2 1
2 r , 0,z!, ~2.4!

where r 5Ax21y2 is the distance from the symmetry axi
For shear flow, C5p21; for axisymmetric strain, C
5(8/3)1/2. Henceforth, time is nondimensionalized b
(CġM1)21, whereM1 is the conserved volume fraction o
the drop phase, and drop volumes are nondimensionalize
the volume of the smallest drop in the system.

We consider a dilute suspension of spherical drops w
viscosity lh in a fluid with viscosityh, and we introduce
the viscosity parameterL51/(11l). Stokes flow condi-
tions apply. The effects of surfactants and nonhydrodyna
forces such as van der Waals attraction are neglected. U
these assumptions,E depends on the parametersk andL and
on the flow type but not on the drop size@20#. According to
the discussion in Sec. I, it follows that hydrodynamic inte
actions may affect the class but not the degree of the ke
function. ThusK is a first-degree kernel.
04630
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In the absence of particle interactions (E51), the colli-
sion kernel is a class II (m50) first-degree homogeneou
function. In this case, the evolution of the system in dime
sionless variables is independent of flow-type and visco
ratio.

Hydrodynamic interactions hinder coalescence, parti
larly for extreme size ratios because smaller drops tend to
convected around, rather than captured by, larger dro
Thus, the system evolves more slowly, and broader drop
distributions are obtained in the presence of hydrodyna
interactions. As shown in the Appendix, collision efficienci
are lower for high viscosity drops (L!1). This results from
the fact that the near-contact lubrication resistance betw
drops with tangentially mobile interfaces is controlled
dissipation associated with the flow inside of the drops@24#.

For L,1, collision efficiencies are lower in shear flo
~2.3! than in axisymmetric strain~2.4!. In shear flow, colli-
sion efficiencies vanish forL below a critical valueL0 given
by Eq. ~A12!.

As shown in the Appendix, collision efficiencies in strai
ing flow vanish in the small size-ratio-limit with exponen
m51/3, wherem is defined by Eq.~1.4!. Thus, Eq.~2.1!
becomes a class I kernel function in the presence of hyd
dynamic interactions in straining flow. In shear flow, col
sion efficiencies vanish with exponentm53/2 at a critical
size ratiok0 but the exponent is defined by Eq.~A10!. How-
ever, the numerical results presented in Sec. IV indicate
theory for class I kernel functions nonetheless describes
long-time behavior of the system.

III. SCALING BEHAVIOR

In the presence of hydrodynamic interactions~class I ker-
nels!, the evolution of the system is controlled by the coale
cence of similar-size drops; in the absence of particle in
actions~class II kernels!, the capture of small drops by th
much larger drops is also important. This picture is borne
by the analysis of Van Dongen and Ernst@8,25# for the long-
time behavior of Eq.~1.1! for first-degree kernels belongin
to classes I and II. Their results are summarized below.

A. Class I kernels

The scaling behavior for class I kernel functions is@25#

w~x!5~s2ln s!n~v,t !, ~3.1!

wherex5v/s(t), ands(t)5M2(t)/M1 is average drop size
with momentsM p defined by Eq.~1.2!. The scaling solution
w(x) is independent of the initial conditions. The small- a
large-size tails of the drop size distribution are described
@25#

w;x22, x!1, ~3.2a!

w'Ax21e2dx, x@1, ~3.2b!

where
7-2
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d

A
5

1

2wI
E

0

1K~u,12u!

u~12u!
du, ~3.3!

and

wI5E
0

1du

u E
12u

` dv

v2
K~u,v !. ~3.4!

For class I kernels, the total number of dropsM0 decays
algebraically

M0;t21, ~3.5!

and the average drop size evolves as@25#

s;exp~2AwIt !. ~3.6!

Expressions~3.3! and ~3.4! were evaluated for collision
kernels~2.1! and ~2.2! with collision efficiencies given by

FIG. 1. Viscosity-ratio dependence of the parameterd/A defined
by Eq. ~3.3! for large-size tail of scaling solution in shear flo
~solid curve!, and straining flow~dashed curve!.
04630
Eqs.~A2!–~A6!. The viscosity and flow-type dependence
the parametersd/A and wI are depicted in Figs. 1 and 2
According to Eq.~3.6!, the flow-type and viscosity ratio af
fect the average drop size at long times through the par
eterwI . As shown in Sec. IV B,wI approximately captures
the influence of flow type and viscosity ratio on the evoluti
of the system.

B. Class II kernels

The scaling behavior for class II kernel functions is@25#

w~x!5s2n~v,t !, ~3.7!

where x and s(t) are defined as in Eq.~3.1!. For class II
kernels, the scaling solution depends on the initial con
tions. The small- and large-size tails of the drop size dis
bution are given by@25#

w;x2211/wII, x!1, ~3.8a!

w;x2be2ax, x@1. ~3.8b!

The number of dropsM0 and the average drop sizes evolve
exponentially for class II kernels@25#

M0;e2t, ~3.9!

s;ewII t. ~3.10!

The constants,wII55.62, a50.515, andb51.18 were ob-
tained by numerical integration of Eq.~1.1!, as described
below.

IV. NUMERICAL SIMULATIONS

Equation~1.1! was integrated as a set of ordinary diffe
ential equations foryi5 log10ni with i 51,2,3, . . . ,N. Dis-
crete drop volume spectra were obtained by considering o
discrete~i.e., monodisperse, bidisperse! initial distributions.
Except as noted, our numerical results correspond to mo
disperse initial conditions:
FIG. 2. Viscosity dependence ofwI defined by Eq.~3.4! for ~a! straining flow,~b! shear flow@L0 is the critical viscosity ratio~A12!#.
7-3
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A. E. ISMAIL AND M. LOEWENBERG PHYSICAL REVIEW E69, 046307 ~2004!
n~v,0!5d~v21!. ~4.1!

A spline over a logarithmic distribution of drop volumes w
used to represent the large-size tail of the distribution. T
overall accuracy of the procedure isO(1/N4). In all cases,
numerical convergence was achieved withN5800. Collision
efficiencies were calculated according to the procedure
scribed in the Appendix.

A. Drop size distributions

Size distributions of interacting and noninteracting dro
are shown in Fig. 3. The initially monodisperse drop s
distributions evolve to an algebraic distribution of sm
drops and an exponential tail of large drops. At long tim
hydrodynamic interactions increase the population of
small drops.

The approach to the scaling regime~3.7! for noninteract-
ing drops is evident by the rescaled distributions depicted

FIG. 3. Drop size distributions, average size indicated;L51
~solid curves!, L54L0 straining flow ~dashed curves!, L54L0

shear flow ~dot-dashed curves!; noninteracting drops~dotted
curves!.
04630
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Fig. 4. The results shown in Fig. 5 reveal that in the prese
of hydrodynamic interactions, the distribution of su
average-size drops approaches the scaling regime~3.1! more
slowly, but the distribution of larger drops does not exhi
this scaling, even at extreme times~corresponding to un-
physical values ofs). Our results indicate that large drop
exhibit a nonuniversal logarithmic evolution in the presen
of hydrodynamic interactions.

For noninteracting drops, the long-time scaling for sm
drops~3.8a! is recovered, as shown in Fig. 6~a!. Figure 6~b!
reveals a logarithmic correction to the long-time scali
~3.2a! for small drops in the presence of hydrodynamic
teractions. Results for a monodisperse~4.1! and a bidisperse
initial drop size distribution

n~v,0!5
1

2
d~v21!1

1

4
d~v22! ~4.2!

are shown in Fig. 6 (M151 for both distributions!. Oscilla-
tions in the drop size distribution, resulting from bidispers

FIG. 4. Rescaled drop size distributions for noninteract
drops. In sequence from left to right, profiles correspond tos
510,102,103,104,108,1012,1016,1020,1024.
FIG. 5. Rescaled drop size distribution for hydrodynamically interacting drops,L51/2, in ~a! straining flow and~b! shear flow. Profiles
from left to right are the same as Fig. 4.
7-4
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FIG. 6. Small-size tail of distribution, average size indicated; monodisperse initial conditions~4.1! ~solid, dashed curves!, bidisperse
initial conditions~4.2! ~2L2L2L2!; ~a! noninteracting drops,~b! L51/2 shear-flow~solid curves,2L2L2L2!, L51/2 straining
flow ~dashed curves!.
y
ia

o

i

dy
sa

ro
r

e

ve.
ap-

en-
ion
ns
tem

s

n

er-

a

th
me
er,
l-
f
ap-
11
al-

ling
top
initial conditions, decay only in the presence of hydrod
namic interactions, consistent with the influence of init
conditions mentioned in Sec. III.

For noninteracting drops, the large-size tail of the dr
size distribution attains the asymptotic form~3.8b! at long
times, as shown in Fig. 7. Figure 8 reveals a logarithm
convergence of the parameterd/A to the long-time result
~3.3!, but the individual parametersd, A of the large size tail
~3.2b! do not become stationary in the presence of hydro
namic interactions. This is consistent with the nonuniver
behavior of large drops seen in Fig. 5.

B. Evolution of the average drop size and number of drops

The evolution of the number of drops and average d
size is depicted in Figs. 9 and 10. In the absence of hyd
dynamic interactions, the system evolves exponentially
long times, as predicted by Eqs.~3.9! and ~3.10!. The slow
approach to the long-time scaling behavior in the presenc

FIG. 7. Large-size tail of distribution witha, b listed below
~3.10!, noninteracting drops. In sequence from bottom to

of figure, profiles corresponds5100,104,106,108,1010,1012,
1016.
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hydrodynamic interactions~3.5! and ~3.6! results from the
nonuniversal evolution of the large drops discussed abo
The effect of the viscosity parameter and flow type are
proximately captured by rescaling time aswIt.

V. THERMOCAPILLARY MIGRATION

Here we consider the size distribution in a dilute susp
sion of spherical drops undergoing thermocapillary migrat
in a uniform temperature gradient. Stokes flow conditio
and purely conductive heat transport are assumed. Sys
parameters include the viscosity parameterL, and a conduc-
tivity parameterLT51/(11lT), wherelT is the ratio of the
drop- and continuous-phase thermal conductivities.

The collision kernel for thermocapillary migration i
given by Eq.~2.1! with

K0~u,v !5pU0v0
21/3~u1/31v1/3!2uu1/32v1/3u, ~5.1!

where U0 is the thermocapillary migration velocity of a
isolated drop with volumev0 @26#. Here, time is nondimen-
sionalized by (pU0v0

21/3M1)21.
The effects of pairwise hydrodynamic and thermal int

actions are incorporated through the collision efficiencyE
for thermocapillary motion. As in shear flow, there exists
critical size ratio below whichE50 @16#. The kernel func-
tions for linear flows and thermocapillary migration are bo
class II in the absence of particle interactions, and beco
class I in the presence of particle interactions. Moreov
both collision kernels scale with the first power of drop vo
ume; however, Eq.~5.1! is not a homogeneous function o
drop volume. Nevertheless, the same long-time scaling
plies to both problems, as shown by the graphs in Figs.
and 12, which were constructed by replotting the values c
culated by Wang and Davis@16#.

VI. CONCLUSIONS

The numerical results presented herein and the sca
analysis of van Dongen and Ernst@25# indicate that hydrody-
7-5
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FIG. 8. Parameters for large-size tail of distribution~3.2b!, L51/2; shear flow~solid curves! and straining flow~dashed curves!; formula
~3.3! @dotted lines in~a!#.
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namic interactions qualitatively affect the long-time evo
tion of the drop size distribution in linear flows and in the
mocapillary migration. According to our results, the scali
theory applies even though the kernel functions do not o
the assumed form~1.3! and ~1.4!, except in straining flow.
However, in the presence of hydrodynamic interactions
scaling regime is attained much more slowly, particularly
the largest drops in the distribution.

Hydrodynamic interactions may have less influence
other systems. Numerical simulations show that hydro
namic interactions do not qualitatively affect the size dis
bution of drops undergoing Brownian motion@16#. This is
because the collision efficiency for Brownian coalescenc
nonvanishing in the small size ratio limit@21#. As a result,
the Brownian collision kernel is class III, whether or n
hydrodynamic interactions are present.

Drop deformation was neglected in our study; this
sumption is valid provided thatB!1 for all drops in the
system, whereB5v1/3hġ/s ands is the coefficient of sur-
face tension. For finiteB, coalescence rates become sensit
to the strength of van der Waals attraction~i.e., Hamaker
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constant!. Moreover, for a fixed value of the Hamaker co
stant there exists a critical drop size corresponding toB
5B* beyond which coalescence is strongly hinderedE'0
@27#. Thus, a narrow drop size distribution, characterized
B'B* is eventually attained@17,18,22,28#.
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APPENDIX A: COLLISION EFFICIENCIES

The relative velocity of two particles in Stokes flow
given by @29#

U12~r12!5
1

2
v3r121e•r12

2@A~r 12! r̂12r̂121B~r 12!~ Î2 r̂12r̂12!#•e•r12,

~A1!
FIG. 9. Evolution of the number of drops in~a! absence,~b! presence of hydrodynamic interactions.~a! numerical result~solid curve!,
scaling~3.9! ~dotted curve!; ~b! L51 ~dot-dashed curve!; in sequence from bottom to top, profiles correspond toL51/2, 1/4, 4L0 shear flow
~solid curves!, straining flow~dashed curves!.
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FIG. 10. Evolution of the average drop size in~a! absence,~b! presence of hydrodynamic interactions;~a! numerical result~solid curve!,
scaling~3.10! ~dotted curve!; ~b! L51 ~dot-dashed curve!; in sequence from bottom to top, profiles correspond toL51/2, 1/4, 4L0 shear
flow ~solid curves!, straining flow~dashed curves!, scaling~3.6! ~line segment!.
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wheree and v are the rate-of-strain tensor and vorticity
the ambient linear flow field respectively,Î is the identity
tensor,r12 is the relative position of the drop centers,r 12
5ur12u is the center-to-center separation, andr̂125r12/r 12 is
the unit orientation vector. Pairwise hydrodynamic intera
tions enter through the scalar pair mobility functionsA andB
which depend on the size ratio of the dropsk the viscosity
ratio l, and the center-to-center separationr 12.

Equation~A1! can be integrated@23# to yield pair colli-
sion efficiencies for drops in axisymmetric straining flow:

Est5e23I st(r 12* ), ~A2!

and in simple shear flow:

Esh5@Est
2/32I sh~r 12* !#3/2, Est

2/3>I sh~r 12* !, ~A3!

Esh50, Est
2/3<I sh~r 12* !. ~A4!

Here,I st and I sh are the mobility function integrals
04630
-

I st~r 12!5E
r 12

` A~ t !2B~ t !

12A~ t !

dt

t
, ~A5!

and

I sh~r 12!5E
r 12

` tB~ t !

12A~ t !
e22I st(t) dt. ~A6!

The collision surface is defined byr 125r 12* , wherer 12* is the
sum of the two drop radii.

Collision efficiencies were evaluated by numerical in
gration of Eq.~A5! and~A6! with mobility functionsA andB
obtained from a solution of the Stokes equations in bisph
cal coordinates@20#.

Calculated collision efficiencies for straining flowEst and
shear flowEsh are shown in Fig. 13. Collision efficiencie
depend on the size ratio, viscosity ratio, and flow type;
s;
it
FIG. 11. Evolution of the number of drops in thermocapillary migration in~a! absence,~b! presence of hydrodynamic interaction
numerical results from Ref.@16# ~symbols!; scaling ~3.5!, and ~3.9! ~dotted curves!; L5LT51/3; Gaussian initial size distribution, un
mean volume, standard deviation 0.2.
7-7
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FIG. 12. Evolution of the average drop size in thermocapillary migration in~a! absence,~b! presence of hydrodynamic interaction
numerical results from Ref.@16# ~symbols!; scaling~3.6! and ~3.10! with wI51, wII51.5 ~dotted curve!; system parameters as in Fig. 11
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symmetryE(k,l)5E(k21,l). As a consequence of hydro
dynamic interactions,E,1. The results show that collisio
efficiencies decrease for extreme size ratios and large vis
ity ratios. In the absence of hydrodynamic interactions,A
5B50, we recoverE51 according to Eqs.~A2!–~A6!. The
transverse mobilityB vanishes forl50 but is otherwise
positive, and the quantity 12A is always positive. It follows
that

Esh<Est , ~A7!

according to Eqs.~A3! and ~A6!. The equality holds for
l50.

For small size ratios, an estimate for the collision e
ciency in straining flow is obtained by approximating t
trajectories of much smaller drops with the streamlines of
undisturbed flow field around a larger drop. Under the
sumption that coalescence occurs for trajectories that in
cept the collision surface, we obtain

Est;k1/3, k!1, ~A8!

consistent with the results shown in Fig. 13~a!.
04630
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In shear flow, the collision surface is completely enclos
by a region of finite trajectories for size ratios smaller tha
critical valuek0 @23# which satisfies

e23I st(r 12* )2I sh~r 12* !50, ~A9!

according to Eqs.~A2! and ~A3!. The collision efficiency
vanishes as

Esh;~k2k0!3/2 ~A10!

for k→k0 . For k,k0 , Esh50. The critical size ratio in-
creases withl, as seen in Fig. 13~b!. Solving Eq.~A9! nu-
merically, we find

k051 for L,L0 , ~A11!

where

L0.7.72731023. ~A12!

For L,L0 , all drop size distributions are stationary in she
flow.
FIG. 13. Collision efficiencies for straining flow~a!, shear flow~b!; viscosity ratiol as indicated.
7-8



c

e

ol

is

-

v.

ce

e

on,

ids

z-

LONG-TIME EVOLUTION OF A DROP SIZE . . . PHYSICAL REVIEW E 69, 046307 ~2004!
@1# D. Rosenfeld, Y. Rudich, and R. Lahav, Proc. Natl. Acad. S
U.S.A. 98, 5975~2001!.

@2# U. Sundararaj and C.W. Macosko, Macromolecules28, 647
~1995!.

@3# D.E. Rosner, R. McGraw, and P. Tandon, Ind. Eng. Chem. R
42, 699 ~2003!.

@4# J. Senee, B. Robillard, and M. Vignes-Adler, Food Hydroc
loids 13, 15 ~1999!.

@5# J.A. Remirez, A. Zinchenko, M. Loewenberg, and R.H. Dav
Chem. Eng. Sci.54, 149 ~1999!.

@6# M. Smoluchowski, Z. Phys. Chem.~Munich! 92, 129 ~1917!.
@7# D. Ramkrishna,Population Balances: Theory and Applica

tions to Particulate Systems in Engineering~Academic, New
York, 2000!.

@8# P.G.J. van Dongen and M.H. Ernst, Phys. Rev. Lett.54, 1396
~1985!.

@9# S.K. Friedlander and C.S. Wang, J. Colloid Interface Sci.22,
126 ~1966!.

@10# C.S. Wang and S.K. Friedlander, J. Colloid Interface Sci.24,
170 ~1967!.

@11# James R. Hunt, J. Fluid Mech.122, 169 ~1982!.
@12# Paul Meakin, Tama´s Vicsek, and Fereydoon Family, Phys. Re

B 31, 564 ~1985!.
@13# J.R. Rogers and R.H. Davis, Metall. Trans. A21, 59 ~1990!.
@14# C. Oh and C.M. Sorensen, J. Aerosol Sci.28~6!, 937 ~1997!.
@15# Jan R. Rogers and Robert H. Davis, J. Atmos. Sci.47, 1075

~1990!.
04630
i.

s.

-

,

@16# Hua Wang and Robert H. Davis, J. Colloid Interface Sci.159,
108 ~1993!.

@17# Michael A. Rother and Robert H. Davis, J. Colloid Interfa
Sci. 214, 297 ~1999!.

@18# Michael A. Rother and Robert H. Davis, Phys. Fluids13, 1178
~2001!.

@19# D.L. Wright, R. McGraw, and D.E. Rosner J. Colloid Interfac
Sci. 236, 242 ~2001!.

@20# H. Wang, A.Z. Zinchenko, and R.H. Davis, J. Fluid Mech.265,
161 ~1994!.

@21# X. Zhang and R.H. Davis, J. Fluid Mech.230, 479 ~1991!.
@22# B.E. Burkhart, P.V. Gopalkrishnan, S. Hudson, A.M. Jamies

M.A. Rother, and R.H. Davis, Phys. Rev. Lett.87, 098304
~2001!.

@23# A.Z. Zinchenko, Prikl. Mat. Mekh.47, 56 ~1984!.
@24# R.H. Davis, J.A. Schonberg, and J.M. Rallison, Phys. Flu

145, 179 ~1984!.
@25# P.G.J. van Dongen and M.H. Ernst, J. Stat. Phys.50, 295

~1988!.
@26# M.J. Block N.O. Young, and J.S. Goldstein, J. Fluid Mech.6,

350 ~1959!.
@27# M. B. Nemer, X. Chen, D. H. Papadopoulos, J. Blawzd

iewicz, and M. Loewenberg~unpublished!.
@28# A. Nandi, A. Mehra, and D.V. Khakhar, Phys. Rev. Lett.83,

2461 ~1999!.
@29# G.K. Batchelor and J.T. Green, J. Fluid Mech.56, 375 ~1972!.
7-9


